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Projective symmetry groups are the mathematical tools which make it possible to list and classify mean-field
spin liquids (SLs) based on a parton construction. The seminal work of Wen [Phys. Rev. B 65, 165113 (2002)]
and its subsequent extension to bosons by Wang and Vishwanath [Phys. Rev. B 74, 174423 (2006)] concerned the
so-called symmetric SLs; i.e., states that break neither lattice symmetries nor time reversal invariance. Here we
generalize this tool to chiral (time reversal symmetry breaking) SLs described in a Schwinger boson mean-field
approach and illustrate it on the triangular lattice, which can harbor nine different weakly symmetric SLs (two
symmetric SLs and seven chiral SLs) with nearest neighbor bond operators only. Results for other lattices (square
and kagome) are given in the Appendixes. Application of this new approach has recently led to the discovery of
two chiral ground states on the kagome lattice [Messio et al., Phys. Rev. Lett. 108, 207204 (2012); Fåk et al.,
Phys. Rev. Lett. 109, 037208 (2012)]. The signature of a time reversal symmetry breaking SL is the presence
in the ground state of nontrivial fluxes of loop operators that break some lattice point group symmetries. The
physical significance of these gauge invariant quantities is discussed both in the classical limit and in the quantum
SL and their expressions in terms of spin observables are given.
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I. INTRODUCTION

Symmetry breaking is a ubiquitous feature of the low
temperature behavior in condensed matter physics. Solids or
Néel antiferromagnets are phases that break some essential
symmetries of the physical laws: translational symmetry or
rotational spin symmetry. Understanding the nature of the bro-
ken symmetries, discrete or continuous, allows to understand
the nature of the elementary excitations and to predict the low-
energy behavior of the materials (Goldstone modes, Mermin
Wagner theorem, topological defects, etc.). In some phases,
at first glance, the symmetry content may be hidden: as, for
example, in helium liquids. The first obvious character is the
absence of translation symmetry breaking and the absence of
a solid phase at zero temperature. It was very early understood
(F. London) that this absence of solidification is due to the
many-body quantum dynamics and the helium phases have
been named quantum liquids to be contrasted to the more “clas-
sical liquids.” It was only decades after the discovery of the
4He superfluidity that the nature of the order parameter was un-
veiled. The understanding of the 3He order parameter has also
been heavily dependent on group symmetry considerations.

A parallel can be developed between this distinction of
quantum liquids versus classical solids and that of spin liquids
(SLs) versus Néel ordered phases. Néel ordered phases at least
break the translational symmetry of the lattice and rotational
symmetry of the spins. They can be described by a local order
parameter and a Landau theory, whereas SL do not break any
lattice symmetries nor spin rotation symmetry and cannot be
described by a local order parameter. Similarly to 4He, SLs can
be characterized by an internal hidden, more or less complex
order.

In this paper we are mainly concerned with topological
SL. These SLs are characterized at T = 0 by exponentially

decaying correlations for all local observables (spins, dimers,
or spin nematic operators) and a spin gap to bulk excitations.
They contrast to critical SLs which have algebraic correlations
and gapless excitations. It has been understood very early1,2

that the elementary excitations of these resonating valence
bond (RVB) SLs carry a spin- 1

2 contrarily to the spin-
1 magnons of the Néel antiferromagnets. These emergent
excitations are called spinons. A natural framework to describe
the SL physics is the use of effective theories with the fractional
particles as elementary building blocks (parton construction).
Going from the original spins to these fractionalized spinons
implies the introduction of gauge fields in which the spinons
are deconfined (SL) or glued (Néel order). At first glance
these approaches introduce via the gauge fields a considerable
(infinite) number of degrees of freedom. In fact, the number
of possible distinct SLs is limited by the requirement that their
physical observables do not break any lattice or spin symmetry
and the enumeration of the different classes of distinct SLs can
be done through group theory analysis.

This was understood 10 years ago by Wen, who developed
a classification of symmetric SLs using projective symmetry
group (PSG) technique.3 The analysis of Wen for fermionic
spinons on the square lattice was extended by Wang and
Vishwanath to bosonic spinons.4 In these works, the definition
of a SL is limited to spin systems that do not break any
symmetry, neither SU(2) spin symmetry nor lattice symmetries
nor time reversal symmetry. These SLs have been dubbed
by Wen symmetric SLs. This definition excludes chiral SLs,
which break time reversal symmetry (and some minimal
amount of lattice symmetry) but which do not break SU(2)
and do not have long range order in spin-spin or dimer-dimer
correlations.

In the wake of Laughlin theory of FQHE, chiral SLs have
been very popular at the end of the 1980s,5–8 but, in the absence
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of indisputable candidates, this option has nearly disappeared
from many discussions in the last decade.

Nonplanar structures are quite ubiquitous in classical
frustrated magnetism9 and are associated to scalar chirality:
�S1 · (�S2 × �S3) �= 0. In some cases where the ground state is
nonplanar this chirality can persists at finite temperature,10,11

although the magnetic order itself is absent for T > 0
(Mermin-Wagner). A similar phenomenon may take place in
quantum systems at T = 0. There, the usual scenario is that
of a gradual reduction of the Néel order parameter when the
strength of the quantum fluctuations is increased. At some
point the sublattice magnetization vanishes and the SU(2)
symmetry is restored (leading to a SL). Now, if the ordered
magnetic structure is chiral, the time reversal symmetry T
may still be broken at the point where the magnetic order
disappears, hence leading to a time reversal symmetry breaking
(TRSB) SL.12 All models with classical chiral ground states
(not so rare, as can be seen in Refs. 9, 13 and 14) are
putative TRSB SL candidates. It is the case of the famous
problem of the Heisenberg Hamiltonian on the kagome lattice.
A TRSB SL ground state is the best ground state appearing
in the framework of the Schwinger Bosons mean-field theory
(SBMFT).15 It breaks time reversal symmetry, is gapped for
moderate spin fluctuations and is in this acception a chiral
SL.16 In a J1-J2 model on the same lattice (with ferromagnetic
J1) a chiral phase is present in a large range of parameters but
in this framework it remains gapless and Néel ordered even in
the presence of large fluctuations.17

The goal of this paper is to revisit the PSG analysis by
relaxing the time reversal symmetry constraint in order to
include chiral SLs. The framework used here is theSBMFT.18

However, as for the symmetric PSG, the symmetry consider-
ations we use here should also be valid to classify SL in the
presence of moderate fluctuations beyond mean field.

The paper is organized as follows. Sections II and III are
reviews, to keep this article self-contained. Section II is a
description of SBMFT to fix the notations and make more
precise the present understanding of this approach. Section III
starts by recalling the gauge invariance of SBMFT and then
describes how the PSG is used to enforce the SL symmetries
on mean-field theories.

In Sec. IV, the concept of PSG is extended to include all
chiral SLs. In Sec. V all the chiral and nonchiral SL theories
with explicit nearest neighbor gauge fields on the triangular
lattice are derived. As an example of application we propose a
chiral SL as the ground state of a ring-exchange model on the
triangular lattice. The physical meaning of the fluxes and their
expressions in terms of spin operators is developed in Sec. VI,
as well as the question of topological loops on finite size
samples. Section VII is the conclusion. Appendixes contain
proofs of some statements in the main text, technical details,
and further applications to the square and kagome lattices.

II. SCHWINGER BOSON MEAN-FIELD THEORY

We consider a spin Hamiltonian Ĥ0({̂Si}i=1,...,Ns
) on a

periodic lattice with Ns spins, each of length S. Ĥ0 can contain
Heisenberg interaction or more complicated terms such as
cyclic exchange, all invariant under global spin rotations
[SU(2) symmetry] and by time reversal transformation T

(Ĥ0({̂Si}) = Ĥ0({−Ŝi})). We insist on these symmetries since
they are the basis of our construction.

Finding the ground state (GS) of a quantum spin problem
is a notoriously difficult problem and the SBMFT provides an
approximate way to treat the problem. This approach can be
summarized by the following steps: (i) The spin operators
(hence the Hamiltonian) are expressed using Schwinger
bosons. (ii) A suitable rotationally invariant mean-field de-
coupling leads to a quadratic Hamiltonian HMF. (iii) HMF is
diagonalized using a Bogoliubov transformation and solved
self-consistently.

A. Bosonic operators and bond operators

Let m be the number of sites per unit cell in the lattice and
Nm the number of unit-cells, so that Ns = Nmm is the total
number of sites. We define the two bosonic operators b̂

†
iσ that

create a spin σ = ±1/2 (or σ =↑ or ↓) on site i. The spin
operators read

Ŝz
i =

∑
σ

σ b̂
†
iσ b̂iσ , (1a)

Ŝ+
i = b̂

†
i↑b̂i↓, (1b)

Ŝ−
i = b̂

†
i↓b̂i↑. (1c)

The Hamiltonian is thus a polynomial of bosonic operators
with only even degree terms. These relations imply that
the commutation relations [Ŝα

i ,Ŝ
β

i ] = iεαβδŜδ
i are verified.

As for the total spin, it reads �̂Si

2 = n̂i

2 ( n̂i

2 + 1), where n̂i =
b̂
†
i↑b̂i↑ + b̂

†
i↓b̂i↓ is the total number of bosons at site i. To

fix the “length” of the spins, the following constraint must
therefore be imposed on physical states:

n̂i =
∑

σ

b̂
†
iσ b̂iσ = 2S. (2)

In traditional MF theories, the MF parameter is the order
parameter (as, for example, the magnetization 〈̂Si〉) and the
MF Hamiltonian consequently breaks the initial Hamiltonian
symmetries, except in the high temperature phase where the
MF parameter is zero. Here, we would like to describe SLs
that do not break any symmetry. Thus, we express Ĥ0 using
quadratic bosonic operators, requiring their invariance by
global spin rotations.

The expectation value of these operators is then used as
mean-field parameters, ensuring that the MF Hamiltonian
respects the rotational invariance. Only linear combinations of
the two following operators and of their hermitian conjugates
obey this property:

Âij = 1
2 (̂bi↑b̂j↓ − b̂i↓b̂j↑), (3a)

B̂ij = 1
2 (̂b†i↑b̂j↑ + b̂

†
i↓b̂j↓). (3b)

i and j are lattice sites and these operators are thus bond
operators. They are linked by the relation

: B̂
†
ij B̂ij : +Â

†
ij Âij = 1

4 n̂i (̂nj − δij ), (4)

where : · : means normal ordering.
Any Hamiltonian invariant by global spin rotation can be

expressed in terms of these operators only. For example, a
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Heisenberg term Ŝi · Ŝj , where i �= j can be decoupled as

Ŝi · Ŝj = : B̂
†
ij B̂ij : −Â

†
ij Âij , (5a)

= 2 : B̂
†
ij B̂ij : −S2, (5b)

= S2 − 2Â
†
ij Âij , (5c)

where the first line is true whatever the boson number, but the
last two lines use Eq. (4) and suppose that the constraint of
Eq. (2) is strictly respected.

To make clear the physical significance of these two bond
operators in the case S = 1

2 , we write them in terms of
projection operators P̂s on the singlet state and P̂t on the triplet
states:

Â
†
ij Âij = 1

2 P̂s, (6a)

: B̂
†
ij B̂ij : = 1

4 (P̂t − P̂s). (6b)

We see in Eq. (6a), that : B̂
†
ij B̂ij : represents a ferromagnetic

contribution to Eq. (5a), whereas Â
†
ij Âij gives the singlet

contribution.

B. The mean-field approximation

We now need two successive approximations to obtain
a quadratic and solvable Hamiltonian. We first relax the
constraint on the boson number by imposing it only on
average,

〈̂ni〉 = κ, (7)

where κ does not need to be a integer. To implement this
constraint, a Lagrange multiplier (or chemical potential) λi is
introduced at each site i and the term

∑
i λi(κ − n̂i) is added

to the Hamiltonian. κ can be continuously varied to interpolate
between the classical limit (κ = ∞) and the extreme quantum
limit (κ → 0).

It should be recalled, in general, that fixing κ = 2S to study
a spin-S model is not necessarily the best choice as in the
SBMFT 〈̂S2

i 〉 = 3
8κ(κ + 2).19 An alternative choice could be

to fix κ in such a way that the spin fluctuations and not the
spin length have the correct value.20

In a second step, bond operator fluctuations are neglected
and a MF Hamiltonian ĤMF that is linear in bond operators is
obtained. For instance,

: B̂
†
ij B̂ij : 
 〈B̂†

ij 〉B̂ij + B̂
†
ij 〈B̂ij 〉 − |〈B̂ij 〉|2. (8)

We replace 〈B̂ij 〉 and 〈Âij 〉 by complex bond parameters
Aij and Bij . This MF approximation can be seen as the
first term of a large N expansion of a Sp(N ) theory.21 The
steps are explained in detail in Ref. 19 in the very similar
case of an SU(N ) theory. This zeroth order 1/N expansion
can be pursued to the first order.22 The MF Hamiltonian
is now a quadratic bosonic operator. It can be written in
terms of a 2Ns × 2Ns complex matrix M and of a real
number ε0 depending on the Aij and Bij and on the Lagrange
multipliers λi ,

ĤMF = φ†Mφ + ε0, (9)

where φ† = (̂b†1↑ ,̂b
†
2↑, . . . ,̂b

†
Ns↑,̂b1↓, . . . ,̂bNs↓).23 The expres-

sion for M and ε0 depend on Ĥ0 and on the chosen decoupling
[for example, using Eqs. (5a)–(5c)].

The set of mean-field parameters {Aij ,Bij } appearing in
HMF is called an ansatz. Up to an equivalence relation that
is described in the next section, an ansatz defines a specific
phase (GS and excitations). Depending on the value of κ , this
state can either have Néel long range order, or the bosons are
gapped (several types of SL are then possible).

In the following, we explain and exploit the relation which
exists between regular classical magnetic orders9 and SLs.

To enforce self-consistency, the following conditions
should be obeyed:

Aij = 〈Âij 〉 and Bij = 〈B̂ij 〉, (10)

which are equivalent to

∂FMF

∂Aij

= 0 and
∂FMF

∂Bij

= 0, (11)

where FMF is the MF free energy, together with the constraint

〈̂ni〉 = κ ⇔ ∂FMF

∂λi

= 0. (12)

The next step is to calculate the mean values of the operators
Âij and B̂ij either in the GS of ĤMF if the temperature is
zero or in the equilibrium state for nonzero temperatures. In
both cases one needs to use a Bogoliubov transformation to
diagonalize HMF. As this transformation is often explained
in the simple case of 2 × 2 matrices (or for particular sparse
matrices), we explain the algorithm in a completely general
case in Appendix A.

C. Choice of bond fields: ̂Ai j and ̂Bi j or ̂Ai j or ̂Bi j only

As in the example of Eqs. (5), the relation (4) can be used to
eliminate Aij or Bij from ĤMF. If we choose to keep only the
Bij parameters, M is block diagonal with two blocks of size
Ns and the vacuum of bosons is a GS. To obey the constraint of
Eq. (2), we have to adjust the boson densities by filling some
zero-energy mode(s), therefore breaking the SO(3) symmetry.
The GS is thus completely classical. On the contrary, we can
keep the Aij only, but then the singlet weight is overestimated,
which can introduce some bias on frustrated lattices where
short-distance correlations are not collinear. Keeping Âij only
is a widespread practice in the literature, but Trumper et al.24

have explicitly shown that the bandwidth of the spectrum of
excitations of the Heisenberg model on the triangular lattice is
twice too large when using Aij fields only. On the other hand,
the use of both Aij and Bij restores the correct bandwidth and
a improves quantitatively the excitation spectrum. Note that
even on the square lattice the simultaneous use of both bond
operators improves the GS energy.25

From a different point of view Flint and Coleman26 advise
the use of both fields in order to have a large-N limit where
spin generators are odd under the time reversal symmetry, as
is the case for SU(2).
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III. THE SEARCH OF SL

Even when considering a Hamiltonian with nearest neigh-
bor interactions only, the dimension of the MF parameters
manifold is exponentially large.27 Moreover, the Lagrange
multipliers λi make the search of the stationary points of the
MF free energy difficult (constrained optimization) as for each
considered ansatz, all λi must be adjusted to calculate the
MF free energy. In Ref. 28 this optimization was carried out
(without any simplifying/symmetry assumption) on square and
triangular lattices with up to 36 sites. In almost all cases the MF
GS turned out to be highly symmetric, as expected, but excited
mean-field solutions are, however, highly inhomogeneous (and
often not understood yet). The problem can be considerably
simplified if we restrict our search to states respecting some (or
all) the symmetries of Ĥ0. Such symmetries are divided into
global spin rotations, lattice symmetries, and time reversal
symmetry. We have assumed from the beginning that Ĥ0

is invariant by global spin rotations and chosen the MF
approximation in such a way that it remains true for ĤMF,
but the choice of a specific ansatz may or may not break other
discrete symmetries. The following section explains how to
find all ansätze such as the physical quantities are invariant
by all the lattice symmetries X , either strictly (for symmetric
SLs) or only up to a time reversal transformation (chiral SLs).

We now define some groups specific to an ansatz: the
invariance gauge group in Sec. III A and the PSG in Sec. III B.
Then, in Sec. III C, we define the algebraic PSG, which is
associated to a lattice symmetry group and not specific to a
particular ansatz on this lattice.

A. Gauge invariance, fluxes, and invariance gauge goup (IGG)

Let G � U (1)Ns be the set of gauge transformations. A
gauge transformation is characterized by an angle θ (i) ∈
[0,2π ] at each site and the operator Ĝ which implements the
associated gauge transformation

b̂jσ → b̂jσ eiθ(j ) = Ĝ†b̂jσ Ĝ (13)

is given by

Ĝ = exp

⎛⎝i
∑

j

b̂
†
jσ b̂jσ θ (j )

⎞⎠ . (14)

A wave function |φ〉 respects a symmetry F̂ if all the physical
observables measured in the state F̂ |φ〉 are identical to those
measured in |φ〉. It does not mean that |φ〉 = F̂ |φ〉, but that
the two wave functions are equal up to a gauge transformation:
∃ Ĝ ∈ G,|φ〉 = ĜF̂ |φ〉.

The action of Ĝ on the ansatz is

Ajk → Ajk ei(θ(j )+θ(k)), Bjk → Bjk ei(−θ(j )+θ(k)), (15)

such that ĤMF remains unaffected by Ĝ. We note that 〈Âjk〉 and
〈B̂jk〉 are gauge dependent: They are not physical quantities
as they do not preserve the on-site boson number. As any such
quantity, their mean values calculated using Ĥ0 is zero when
the average is taken on all gauge choices. Using ĤMF, it can
be nonzero as the gauge symmetry is explicitly broken by the
choice of the ansatz.

We have seen that changing the gauge modifies the
ansatz but not the physical quantities. Conversely, if two MF

Hamiltonians give rise to the same physical quantities, then
their ansätze are linked by a gauge transformation. In fact,
two types of physical quantities are directly related to the
ansatz: the MF parameter moduli (related to the scalar product
of two spins) and the fluxes. The fluxes are defined as the
arguments of Wilson loop operators such as 〈B̂ij B̂jkB̂ki〉 or
of 〈Â†

ij ÂjkÂ
†
klÂli〉. By construction these quantities are gauge

invariant and define the ansatz up to gauge transformations.
The physical meaning of fluxes are addressed in Sec. VI.

The gauge transformations that do not modify a specific
ansatz form a subgroup of G called the IGG. It always contains
the minimal group Z2 formed by the identity and by the
transformation Eq. (13) with θ (i) = π for all lattice sites i.
In the particular cases where we can divide the lattice in two
sublattices such as Aij = 0 whenever i and j are in the same
sublattice (bipartite problem), the IGG is enlarged to U(1).
The later situation corresponds, for instance, to an ansatz on a
square lattice with only first neighborAij . The transformations
of the IGG are then given by θ (i) = θ on one sublattice and
θ (i) = −θ on the other, with arbitrary θ ∈ [0,2π ].

B. The projective symmetry group

Let X be the group of the lattice symmetries of the
Hamiltonian Ĥ0 (translations, rotations, reflections, etc.).
From now on, for the sake of simplicity, we discard the hat on
the gauge and symmetry operators. The effect of an element
X of X on the bosonic operators is

X : b̂jσ → b̂X(j )σ . (16)

The effect of X on the ansatz is

Ajk → AX(j )X(k), Bjk → BX(j )X(k). (17)

We know that a gauge transformation does not change any
physical quantities. What about the lattice symmetries? We
know from Sec. III A that if the ansätze before and after
the action of X have the same physical quantities, they are
linked by a gauge transformation: Thus, at least one gauge
transformation GX such as GXX leaves the ansatz unchanged.
The set of such transformations of G × X is called the PSG
of this ansatz. Note that this group only depends on the ansatz
and on X , but not on the details of the Hamiltonian. Thus,
an ansatz is said to respect a lattice symmetry X if there is
a transformation GX ∈ G such that the ansatz is invariant by
GXX.

The IGG of an ansatz is the PSG subgroup formed by the
set of gauge transformations GI associated with the identity
transformation I of X . For each lattice symmetry X ∈ X
respected by the ansatz, the set of gauge transformations GX

such as GXX is in the PSG is isomorph to the IGG: For any
GI in the IGG, (GIGX)X is in the PSG. Thus, the condition
for an ansatz to respect all the lattice symmetries is that its
PSG is isomorphic to IGG × X .

C. The algebraic projective symmetry groups

An ansatz is characterized (partially) by its IGG and its
PSG. In turn, we know from these groups which lattice
symmetries it preserves. Reversely we now want to impose
lattice symmetries and find all ansätze that preserve them. To
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reach this goal, we proceed in two steps. The first one is to find
the set of the so-called algebraic PSGs.3,4 They are subgroups
ofG × X verifying algebraic conditions necessarily obeyed by
a PSG. Contrary to the PSG of an ansatz, the algebraic PSGs
exist independently of any ansatz and only depend on the lattice
symmetry group X and on the choice of an IGG (chosen as
the more general). An algebraic PSG does not depend on the
details of the lattice such as the positions of the sites. However,
depending on these details, an algebraic PSG may have zero,
one, or many compatible ansätze. The second step consists,
for a given lattice, of finding all the ansätze compatible with a
given algebraic PSG.

Let us detail the algebraic conditions verified by the
algebraic PSGs. The groupX is characterized by its generators
x1, . . . ,xp. A generator xa has an order na ∈ N∗ such as xna

a is
the identity (if no such integer exists, we set na = ∞). For any
transformation X ∈ X , there exists a unique ordered product
X = x

k1
1 , . . . ,x

kp

p with 0 � ka < na if na is finite, ka ∈ Z if
not. The rules used to transform an unordered product into
an ordered one are the algebraic relations of the group. Each
of these rules implies a constraint on the Gxa

(chosen as one
of the gauge transformation associated with xa). Basically, it
states that if a lattice symmetry X can be written in several
ways using the generators, the gauge transformation GX is
independent of the writing (up to an IGG transformation). The
subgroups of G × X respecting all these constraints are the
algebraic PSGs.

To illustrate the idea, let us consider a basic example where
X is generated by two translations x1 and x2. Both transfor-
mations have an infinite order n1 = n2 = ∞. We have X ∈ X
written as product of generators X = x

m1
1 x

m2
2 x

m3
1 x

m4
2 · · · and

we would like to write it as X = x
p1
1 x

p2
2 . The needed algebraic

relation is simply the commutation between the two trans-
lations: x1x2 = x2x1. We then have p1 = m1 + m3 + · · · and
p2 = m2 + m4 + · · · . We now see that this implies a constraint
on Gx1 and Gx2 . Suppose that we have an ansatz unchanged by
Gx1x1 and Gx2x2. Then the inverses x−1

1 G−1
x1

or x−1
2 G−1

x2
too

are in the PSG. So, the product Gx1x1Gx2x2x
−1
1 G−1

x1
x−1

2 G−1
x2

∈
PSG. This product has been chosen to make the algebraic
relation x1x2 = x2x1 (⇔ x1x2x

−1
1 x−1

2 = I ) appear after the
following manipulations:

Gx1x1Gx2x2x
−1
1 G−1

x1
x−1

2 G−1
x2

∈ PSG

⇔ Gx1

(
x1Gx2x

−1
1

)
x1x2x

−1
1 x−1

2

(
x2G

−1
x1

x−1
2

)
G−1

x2
∈ PSG

⇔ Gx1

(
x1Gx2x

−1
1

)(
x2G

−1
x1

x−1
2

)
G−1

x2
∈ PSG.

The expressions in parentheses in the last line are pure gauge
transformations and the full resulting expression is a product
of gauge transformations. Thus, we can more precisely write

Gx1

(
x1Gx2x

−1
1

)(
x2G

−1
x1

x−1
2

)
G−1

x2
∈ IGG. (18)

If the IGG is Z2, this constraint can be written in terms of the
phases θX(i) of the gauge transformation GX as

θx1 (i) + θx2

(
x−1

1 i
) − θx1

(
x−1

2 i
) − θx2 (i) = pπ, (19)

with p = 0 or 1. This constraint coming from the commutation
relation between x1 and x2 must be obeyed by all algebraic
PSGs.

It is useless to list all algebraic PSGs for the simple reason
that some of them are equivalent and give ansätze with the
same physical observables. Two (algebraic or not) PSGs are
equivalent if they are related by a gauge transformation G:
For any gauge transformation GX associated with the lattice
symmetry X in the first PSG, GGXG−1 belongs to the set of
gauge transformations associated with X in the second PSG.
We are only interested in equivalence classes of PSGs.

Taking algebraic PSGs in different classes does not imply
that they have no common ansätze: A trivial example is the
ansatz with only zero parameters, belonging to any algebraic
PSGs. However, each class includes ansätze that are in no other
class and have specific physical properties.

Once all the algebraic PSGs classes are determined, it
remains to find the possible compatible ansätze for one
representant of each class. As an example of compatibility
condition, let us take the case where X belongs to the
considered algebraic PSG (i.e., GX = I ). Then an ansatz can
be compatible with this algebraic PSG only if, for any couple of
sites (i,j ), Aij = AX(i)X(j ). If such compatible ansätze exist,
they respect the lattice symmetries by construction (in the
sense that their physical quantities do so). We now want to
impose the time reversal symmetry: Among the compatible
ansätze, we only keep those that are equivalent to a real
ansatz up to a gauge transformation. We call them strictly
symmetric ansätze (weakly symmetric ones are defined in the
next section).

To completely define an ansatz, it is sufficient to give
the algebraic PSG and the values of the MF parameters on
non-symmetry-equivalent bonds. For example, on a square (or
triangular or kagome) lattice with all usual symmetries (see
Fig. 2) and only first neighbor interactions, the Aij and Bij of
one bond are enough.

IV. FROM CHIRAL LONG RANGE ORDERS
TO CHIRAL SLS

We now show that the zoo of Néel LRO obtained from the
strictly symmetric ansätze misses the chiral states which are
exact GSs of a large number of frustrated classical models. This
will lead us in a straightforward manner to the construction
of chiral algebraic PSGs in which time reversal and some
lattice symmetries can be broken (Sec. IV B). This generalized
framework will then be illustrated on the triangular lattice in
Sec. V and on the square and kagome lattice in Appendix D .

A. SU(2) symmetry breaking of symmetric ansäzte

To simplify, we suppose that all lattice sites are equivalent
by symmetry and only consider ansätze such that the λi are
all equal to a single λ. Even if an ansatz is strictly symmetric,
it does not always represent a SL phase. As is well known in
SBMFT, a Bose condensation of zero energy spinons can occur
and leads to Néel order. We discuss how the ansäzte symmetry
constrains the magnetic order obtained after condensation and
establish a relation with the regular states introduced in Ref. 9.

The Bogoliubov bosons creation operators are linear com-
binations of the b̂iσ and b̂

†
iσ such that their vacuum |0̃〉 is a

GS of ĤMF (see Appendix A). If the GS is unique, it must
respect all the Hamiltonian symmetries and consequently,
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cannot break the global spin rotation invariance. However,
when κ increases (we continuously adapt the ansatz to κ so
that the self-consistency conditions remains verified and the
PSG remains the same), some eigenenergie(s) decrease(s) to
zero. The GS is then no more unique as the zero mode(s) can
be more or less populated and the phases of each zero mode
are free. It is then possible to develop a long-range spin order.

This phenomenon occurs when no λ verifies condi-
tion (12). If λ increases the mean number of boson per
site increases up to a maximal number κmax. At this point, some
eigenenergies become zero. Increasing λ further is not possible
as the Bogoliubov transformation becomes unrealizable [the
M matrix of Eq. (9) has nonpositive eigenvalues]. To reach
the required number of boson per site, we have to fill the zero
energy modes b̃

†
1, b̃

†
2,..., using coherent states eα1b̃

†
1+α2b̃

†
2+···|0̃〉,

for example. In the thermodynamical limit the fraction of
missing bosons is macroscopic and a Bose condensation occurs
in each of the soft modes. The choice of the weight αi of these
modes fixes the direction of the on-site magnetization. Detailed
examples of magnetization calculations in a condensate are
given by Sachdev.29

In the classical limit (κ → ∞), all bosons are in the
condensate and contribute to the on-site magnetization mi .
The modulus |mi | should be equal to κ/2 to satisfy Eq. (9).
The b̂iσ operators acquire a nonzero expectation value 〈̂biσ 〉
and are (up to a gauge transformation) linked to mi by(

〈̂bi↑〉
〈̂bi↓〉

)
=

( √|mi | + mz
i√|mi | − mz

i e
iArg(mx

i +im
y

i )

)
, (20)

where Arg is the argument of the complex number and
m

x,y,z

i are the magnetization components. These values are
constrained by the ansatz through

Aij = 1
2 (〈̂bi↑〉〈̂bj↓〉 − 〈̂bj↑〉〈̂bi↓〉), (21a)

Bij = 1
2 (〈̂b†i↑〉〈̂bj↑〉 + 〈̂b†i↓〉〈̂bj↓〉). (21b)

The supplementary constraint reads

|mi | ∼ κ/2. (22)

This extra constraint can make the classical limit problem un-
solvable: No classical magnetization pattern is then compatible
with the ansatz. An example of such a situation was studied
by Wang and Vishwanath4 (see Appendix C).

We can take the problem of the classical limit from the
other side. We begin from a classical state, from which we
calculate 〈̂biσ 〉 and the ansatz [using Eqs. (20) and (21)]. What
are the conditions on the classical state for the associated
ansatz to be strictly symmetric? As we look for an ansatz
respecting all lattice symmetries, the rotationally invariant
quantities (as the spin-spin correlations) must be invariant
by all lattice symmetries, which severely limits the classical
magnetization pattern. Such a state is called a SO(3)-regular
state. Mathematically, a state is said to be SO(3) regular if
for any lattice symmetry X there is a global spin rotation
SX ∈ SO(3) such as the state is invariant by SXX. Moreover,
the time reversal symmetry (i.e., the ansatz can be chosen to be
real) imposes the coplanarity of the spins.30 The set of coplanar
SO(3)-regular states can be sent on the set of condensed states
of strictly symmetric ansätze. In the same way, we define the

FIG. 1. (Color online) Tetrahedral order on the triangular lattice.

O(3)-regular states by including global spin flips Si → −Si in
the group of spin transformations. These O(3)-regular states
are listed in Ref. 9 for several two-dimensional lattices. The
O(3)-regular states are divided in coplanar SO(3)-regular states
and in chiral states. In a chiral state, the global inversion
Si → −Si cannot be “undone” by a global spin rotation.
Equivalently, there exist three sites i, j , k such as the scalar
chirality Si · (Sj ∧ Sk) is nonzero: The spins are not coplanar.
Then a strictly symmetric ansatz, upon condensation, can
only give coplanar SO(3)-regular states in the classical limit,
therefore missing all chiral O(3)-regular states.

This limitation can seem unimportant as most of the usual
long range ordered spin models have planar GSs. However,
some new counterexamples have recently been discovered.
The first example is the cyclic exchange model on the
triangular lattice10 with a four sublattice tetrahedral chiral GS
(see Fig. 1). More recently, two 12 sublattice chiral GSs, with
the spins oriented towards the corners of a cuboctahedron, were
discovered on the kagome lattice with first and second neighbor
exchanges11,31 (studied in Appendix D 2). A systematic study
of the classical GSs of simple models on different lattices has
indeed revealed that the GSs are chiral for large ranges of
interaction values.9

The theory of symmetric PSG is unable to encompass
such chiral states. In the following section, we build TRSB
SL ansätze which include, upon condensation, all classical
regular chiral states. This method was already applied to the
kagome lattice with up to third neighbor interactions, leading
to the surprising result of a chiral state even in the purely first
neighbor model.15 If this state is physically relevant or not
is still an open question, but independently, it shows that the
omission of chiral ansätze has prevented the discovery of more
competitive MF solutions.

B. The chiral algebraic PSGs: How to include weakly
symmetric states

The time reversal transformation T acts on an ansatz by
complex conjugation of the MF parameters.3 If an ansatz
respects this symmetry, it is sent to itself by T (up to a gauge
transformation). So, in an appropriate gauge, all parameters
can then be chosen real. In most previous SBMFT studies, the
hypothesis of time reversal invariance of the GS was implicit,
as only real ansätze were considered. In contrast to SU(2)
global spin symmetry that can easily be broken through the
Bose condensation process, no transition is known to produce a
chiral ordered state out of a T -symmetric ansatz. Indeed, chiral
ansätze have loops with complex-valued fluxes which evolve
continuously with κ . We do not expect any singular behavior
of these (local) fluxes when crossing the condensation point,
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so the generic situation is that a chiral LRO phase will give
rise to a TRSB SL15,17 when decreasing κ . It is, of course,
possible that the lowest-energy ansatz changes with κ but such
a first-order transition has no reason to coincide with the onset
of magnetic LRO.

To obtain all chiral SLs we have to explicitly break
time reversal symmetry at the MF level in the ansatz. For
SO(3) classical regular states, a lattice transformation from
X is compensated by a global spin rotation (that leaves the
ansatz unchanged). For O(3) classical regular states, a lattice
transformation X ∈ X is compensated by a global spin rotation
possibly followed by an inversion Si → −Si . This defines a
parity εX to be +1 if no spin inversion is needed and −1
otherwise. In a chiral SL, the parity will be deduced from the
effect of X on the fluxes: εX = 1 if they are unchanged and
−1 if they are reversed. With this distinction in mind we call
weakly symmetric (WS) ansätze the ansätze respecting the lat-
tice symmetries up toT , whereas the ansätze respecting strictly
all lattice symmetries and T have already been called strictly
symmetric (SS) ansätze (all lattice symmetries are even).

The distinction between even and odd lattice symmetries (as
defined by εX) is the basis of the construction of all WS ansätze
via the chiral algebraic PSGs. Let us consider Xe the subgroup
of transformations ofX that can only be even. Mathematically,
Xe is the subgroup of X , whose elements are sent to the
identity by all morphisms fromX toZ2.Xe contains at least all
the squares of the elements of X as εX2 = ε2

X = 1. However,
depending on the algebraic relations of X , it may contain more
transformations as we show in the triangular case in Sec. IV C.
Once Xe is known, we define the chiral algebraic PSGs of X
as the algebraic PSGs of Xe. The method described previously
to find all algebraic PSGs applies the same way. We define Xo

as the set of transformations which may be odd (X − Xe). It
contains transformations of undetermined parities.

To filter the weakly symmetric ansätze from those com-
patible with the chiral algebraic PSGs, we have to take care
of the transformations of Xo. This gives two types of extra
constraints. First, same type (A or B) MF parameters on bonds
linked by such transformation must have the same modulus.
The second constraint concerns their phases through the fluxes.
The phases are gauge dependent, but the fluxes are gauge
independent. Fluxes are sent to their opposite by T , as well
as by the odd transformations of X . They are unchanged by
even transformations. To find all WS ansätze we then have to
determine a maximal set of independent elementary fluxes and
distinguish all possible cases of parities for the transformations
of Xo (εX = ±1).

We can now apply these theoretical considerations to find
all WS ansätze on some usual lattices as the triangular,
honeycomb, kagome, and square lattice. The calculations are
detailed for the triangular lattice in the following subsections
and some results for the kagome and square lattice are given
in Appendix D.

C. Chiral algebraic PSGs of lattices with a triangular
Bravais lattice

The first step is to find all chiral algebraic PSGs. As already
mentioned, they only depend on the symmetries of Xe and on
the IGG. We choose the most general case of IGG ∼ Z2 and

V1

V2 R6

σ

V1

V2 R4
σ

FIG. 2. (Color online) Generators of the lattice symmetries X on
the triangular and square lattices. Vi is a translation, σ is a reflection,
and Ri is a rotation of order i.

suppose that Ĥ0 respects all the lattice symmetries with the
generators described in Fig. 2. These symmetries are those of
a triangular lattice, but the actual (spin) lattice of Ĥ0 can be any
lattice with a triangular Bravais lattice such as a honeycomb,
a kagome, or more complex lattices. The coordinates (x,y) of
a point are given in the basis of the translation vectors V1, V2

and the effect of the generators on the coordinates are

V1 : (x,y) → (x + 1,y), (23a)

V2 : (x,y) → (x,y + 1), (23b)

R6 : (x,y) → (x − y,x), (23c)

σ : (x,y) → (y,x). (23d)

The algebraic relations in X are

V1V2 = V2V1, (24a)

σ 2 = I, (24b)

R6
6 = I, (24c)

V1R6 = R6V−1
2 , (24d)

V2R6 = R6V1V2, (24e)

V1σ = σV2, (24f)

R6σR6 = σ. (24g)

Let us now determine the subgroup Xe of transformations
which are necessarily even. It evidently includes V2

1 , V2
2 , and

R2
6 (noted R3). However, there are more even transformations

in this subgroup. Using Eq. (24e) we find εV2εR6 = εR6εV1εV2 ,
so εV1 = 1. In the same way, using Eq. (24d), we get εV2 =
1. Thus, Xe is generated by V1, V2, and R3. The algebraic
relations in Xe are

V1V2 = V2V1, (25a)

R3
3 = I, (25b)

R3V1 = V2R3, (25c)

R3 = V1V2R3V2. (25d)

As explained in Sec. III C, each of these relations gives a
constraint on the gauge transformations associated to the cor-
responding generators. Equations (25) imply that for any site i,

θV2

(
V−1

1 i
) − θV2 (i) = p1π, (26a)

θR3 (i) + θR3 (R3i) + θR3

(
R2

3i
) = p2π, (26b)

θR3 (i) − θR3

(
V−1

2 i
) − θV2 (i) = p3π, (26c)

θV2

(
V−1

1 i
) + θR3

(
V−1

2 V−1
1 i

)
+ θV2

(
V2R2

3i
) − θR3 (i) = p4π, (26d)
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where p1 to p4 can take either the value 0 or 1 (the equations
are written modulo 2π ). We note [x] the integer part of x and
x∗ = x − [x] (0 � x∗ < 1). By partially fixing the gauge, we
can impose

θV1 (xi,yi) = 0, θV2 (x∗
i ,yi) = p1πx∗

i . (27)

Through a gauge transformation G of argument θG, the θX of
a lattice transformation X becomes

θX(i) → θG(i) + θX(i) − θG(X−1i) (28)

and the algebraic PSG is transformed in an other element of
its equivalence class. Using the gauge transformations

G3 : (x,y) → πx, G4 : (x,y) → πy, (29)

we see that a change of p3 or p4 is a gauge transformation, so
we can set them to zero. Solving the set of Eqs. (26) leads to

θV1 (x,y) = 0, (30a)

θV2 (x,y) = p1πx, (30b)

θR3 (x,y) = p1πx

(
y − x + 1

2

)
+ gR3 (x∗,y∗), (30c)

with a supplementary constraint that can only be treated when
the spin lattice is defined:

gR3 (x∗,y∗) + gR3 ((−y)∗,(x − y)∗)

+ gR3 ((y − x)∗,(−x)∗) = p2π. (31)

This constraint only depends on the coordinates of the sites in
a unit cell (x∗ and y∗).

Equations (30) and (31) define the chiral algebraic PSG
on the triangular Bravais lattice. The full determination of
the WS antsätze requires the determination of the spin lattice
[triangular, honeycomb (m = 2), or kagome (m = 3)] and of
the number of interactions included in the MF Hamiltonian
(first neighbor only or first and second neighbor; A and B
parameters, or A only, etc.). The case of the triangular lattice
(m = 1) with nearest neighbor interactions and A and B MF
parameters is described in the next section.

V. STRICTLY AND WEAKLY SYMMETRIC ANSÄTZE ON
THE TRIANGULAR LATTICE WITH FIRST NEIGHBOR

INTERACTIONS

A. Construction of WS ansätze on the triangular lattice

The triangular lattice has a single site per unit cell and the
values of x∗ and y∗ are the coordinates of this site in a unit
cell, say (0,0). Equation (31) simplifies to

6gR3 (0,0) = 0. (32)

The solutions are gR3 (0,0) = kπ/3, with k integer. Because the
IGG is Z2, only the three values k = −1,0,1 lead to physically
different ansätze.

Finally, we have six distinct algebraic PSGs for the reduced
set of symmetries Xe. They are characterized by two integers
p1 = 0,1 and k = −1,0,1 and defined by

θV1 (x,y) = 0, (33a)

θV2 (x,y) = p1πx, (33b)

θR3 (x,y) = p1πx

(
y − x + 1

2

)
+ kπ

3
. (33c)

FIG. 3. (Color online) Ansätze respecting the Xe symmetries on
the triangular lattice. All arrows carry Bij parameters of modulus
B1 and of argument φB1 and Aij parameters of modulus A1 and of
argument 0 on red arrows (choice of the gauge), 2kπ/3 on blue ones,
and 4kπ/3 on green ones. On dashed arrows Aij and Bij take an extra
p1π phase.

Now, we have to find all the ansätze compatible with these
PSGs.32 The first useful insight is to count the number of
independent bonds. Here, one can obtain any bond from any
other by a series of rotations and translations (i.e., elements
of χe). Thus, if we fix the value of Aij and Bij on a bond ij ,
we can deduce all other bond parameters from the PSG. Note
that Aij can be chosen as real by using the gauge freedom.
The value of all bond parameters are represented on Fig. 3 as a
function of their value on the reference bond. The unit cell of
the ansatz contains up to two sites because p1 may be nonzero.

From now on we can forget about the PSG construction and
only retain the definition of the ansatz given by Fig. 3 and its
minimal set of parameters: two integers p1 and k, two moduli
A1 and B1, and one argument φB1 .

Until now, we have only considered the subgroupXe and we
have looked for ansätze strictly respecting these symmetries.
We now want to consider all symmetries in X , but the
symmetries in Xo will be obeyed modulo an eventual time
reversal symmetry. This requires supplementary conditions
on the ansätze of Fig. 3. As explained in Sec. IV B, the
transformations of Xo imply relations between the modulus
and the arguments of the ansatz. Since we are in a very
simple case, where all bonds are equivalent in Xe, no
extra relation on the modulus can be extracted from Xo.
However, some conditions can be found by examining how
the fluxes Arg(AijA∗

jkAklA∗
li) on an elementary rhombohedron

and Arg(AijBjkA∗
ki) on an elementary triangle transform with

R6 and σ . Assuming that neither A1 nor B1 are zero we find

2kπ (1 − εR6 )/3 = 0, (34a)

2kπ (1 + εσ )/3 = 0, (34b)

(1 + εR6 )φB1 = p1π, (34c)

(1 − εσ )φB1 = p1π. (34d)

For each set (εR6 ,εσ ), the compatible ansätze are thus limited to
(i) (εR6 ,εσ ) = (1,1): k = 0, p1 = 0 and φB1 = 0 or π ,

(ii) (εR6 ,εσ ) = (−1,−1): k = 0, p1 = 0 and φB1 = 0 or π ,
(iii) (εR6 ,εσ ) = (1,−1): φB1 = p1π/2 or π + p1π/2,
(iv) (εR6 ,εσ ) = (−1,1): k = 0, p1 = 0 and no constraint on

φB1 .
A couple (εR6 ,εσ ) does not characterize an ansatz. A given

ansatz, can be found for several couples of parities. For
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TABLE I. The nine weakly symmetric ansätze families on the
triangular lattice, with the notations of Fig. 3. The moduli A1 and B1

are not constrained although supposed nonzero.

example, the ansätze obtained for (εR6,εσ ) = (1,1) are also
present for all other (εR6,εσ ). Indeed, as their MF parameters
are real, they are not sensitive to time reversal and any εR6 , εσ

can be chosen. From the classical point of view, these ansätze
describe coplanar spin configurations, which are invariant
under a global spin flip followed by a π rotation around an
axis perpendicular to the spin plan.

Finally, there are nine different WS ansätze families, given
in Table I. We now conclude this section with a series of
remarks concerning the solutions we have obtained.

(i) The number of WS ansätze families is larger than the
number of algebraic PSGs of Xe, because the operators in Xo

can act in different ways on the ansätze.
(ii) Among these nine ansätze families, only the two first are

nonchiral, and the seven others are TRSB ansätze (by applying
T , k = 1 is changed to k = −1 and φB1 to −φB1 ).

(iii) These solutions are called families as the moduli A1 and
B1 can vary continuously without modifying the symmetries.
The third ansatz has no fixed value for φB1 and includes the
first and second ansätze families (they are kept as distinct as
they are nonchiral).

(iv) The fluxes of these ansätze are easily calculated using
Fig. 3.

TABLE II. Values of the parameters of Fig. 3 for ansatz families
related to regular classical states on the triangular lattice. The states
are designed by F for ferromagnetic, Coplanar for the

√
3 × √

3 state,
and Tetra for tetrahedral. These states are described in more detail
in Ref. 9. The question marks mean that the two values ε = ±1 are
possible (coplanar or colinear state). The ∗ means that the parameter
value is free; we give its value in the classical limit.

(v) The detailed list of compatible ansätze depends on the
choice of the mean-field parameters (here, nonzero Aij and
Bij on first neighbor bonds) as we explain in Appendix C by
contrasting these results to those of Wang et al. on the same
lattice.4

B. Condensation of the WS ansätze: The missing
tetrahedral state

The SBMFT has already been used to study the anti-
ferromagnetic Heisenberg first-neighbor Hamiltonian on the
triangular lattice with the Aij -only decoupling4,29 [Eq. (5c)]
or with both Aij and Bij

24 [Eq. (5a)]. The classical limit of
this model gives the well known three sublattice Néel order
with coplanar spins at angles of 120◦. The bond parameters
obtained from this classical order [see Eqs. (21)] lead to a
strictly symmetric ansatz [no need to break T : We can choose
to fix (εR6 ,εσ ) = (1,1)] with p1 = 0, k = 0, and φB1 = π (see
Table II). We note that all MF parameters are real in this gauge
choice (it is always possible to do so for coplanar states). In
this case the restriction to real bond parameters did not prevent
obtaining the true MF GS.

The tetrahedral state (Fig. 1) is the unique GS of the multi-
spin exchange Hamiltonian in a large range of parameters:9,10

Ĥ = J2

∑
〈ij〉

P̂(ij ) + J4

∑
〈ijkl〉

(P̂(ijkl) + P̂(ilkj )), (35)

where the second sum runs on every elementary rhombohedra
and P̂(ijkl) is a cyclic permutation of the spins and J4 > 0 and
1
4 < J2

J4
< 1. Moreover, it is one of the GSs of a Heisenberg

Hamiltonian with first and second neighbor interactions

Ĥ =
∑
〈ij〉

Ŝi · Ŝj + α
∑
〈〈ij〉〉

Ŝi · Ŝj (36)

for 1
8 � α � 1. In the later situation the GS is, however,

degenerate and fluctuations (order by disorder) favor collinear
orders.33,34

The bond parameters obtained from this classical order
[Eqs. (21)] lead to the weakly symmetric ansatz ((εR6,εσ ) =
(1,−1)) with p1 = 1, k = 1, and φB1 = π/2 (or opposite k

and φB1 for the opposite chirality), as indicated in Table II.
The previous SBMFT studies of the ring exchange model
[Eq. (35)] have been limited to real parameters35 and it would
be interesting to perform a systematic search for a possible
chiral MF GS. If the chiral ansatz indeed turns out to have the
lowest energy—as suggested by its classical limit—then the
spin- 1

2 might be a chiral SL since exact diagonalizations36,37

have shown the absence of Néel long range order in some
parameter range.

VI. FLUXES

We have already given a brief definition of the fluxes
in Sec. III A; in this section we enlarge this definition and
comment on the physical meaning of the various loop operators
(local and nonlocal) that can be defined on a lattice.

The gauge invariance of a product of Âij , Â
†
ij , B̂ij , and

B̂
†
ij operators on a closed contour requires two conditions:
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(i) each site i appears in an even number of terms; (ii) the
set of operators containing a site i can be organized into pairs
such as the product of each pair is invariant by a local gauge
transformation on site i (for example, Âji and B̂ik). Such
a gauge-invariant operator is the analog of a Wilson loop
operator in gauge theory and the complex argument of its
expectation value is called a flux. Arg〈Âij Â

†
jk · · · ÂlmÂ

†
mi〉,

Arg〈B̂ij B̂jk · · · B̂li〉 are examples of fluxes with only Âij or
B̂ij operators, but it is possible to mix both, as, for example,
in Arg〈Âij Â

†
jkB̂

†
klÂlmÂ

†
mi〉. In SBMFT we approximate these

averages of products by the product of the averages (this
can be formally justified in the N → ∞ limit). For example,
〈B̂ij B̂jk · · · B̂li〉 → BijBjk · · ·Bli .

There is an infinite set of nonindependent fluxes.38 A
method to determine the number of independent fluxes for
a given set of non zero Aij and Bij is given in Appendix
E. To characterize a given ansatz, we can limit ourselves
to the minimal set of independent parameters that define
unequivocally its equivalence class: essentially the nonzero
bond field modulus and a minimal set of fluxes.

The first insight on the physical meaning of the fluxes is
given in the classical limit (Sec. VI A), where they are simple
geometric quantities related to the orientation of the spins.
Then we come back to the quantum case and express the
fluxes, which are physical quantities, with the exclusive use of
spin operators (Sec. VI B).

A. Definition and physical meaning in the classical limit

We first concentrate on the mean-field flux formed by
products of Bij parameters. In the classical limit, the flux of
Bij around a loop ijk · · · l: Arg(BijBjk · · ·Bli) is related to the
solid angle associated to the contour described by the spins on
the Bloch sphere. We give here a simplified formulation of the
calculation given in Ref. 19. Let us suppose that the direction
of the magnetization (with a modulus fixed to 1) evolves slowly
along the loop and use the gauge of Eq. (20), but in spherical
coordinates: (

〈̂bi↑〉
〈̂bi↓〉

)
=

√
S

(
cos θi

2

sin θi

2 eiφi

)
. (37)

Then,

Arg(B∗
ij) 
 S(1 − cos θi)

φj − φi

2
. (38)

This last quantity (to first order in the variation of the spin) is
the half of the solid angle between the three directions defined
by the z axis and the spins at sites i and j . By summing
such quantities around a closed contour, we obtain the half
of the solid angle spanned by the spins along the loop. This
illustrates the gauge dependence of a single B∗

ij : By a gauge
transformation we change the direction of the z axis and

thus Arg(B∗
ij), but the total solid angle of the closed loop is

independent of the choice of the z.
In a similar approach the flux Arg(Aij(−A∗

jk)
· · ·Alm(−A∗

mi) is associated with the half of the solid
angle defined by the spins along the loop, but after flipping
one spin every two sites (the j spin for Aij , the i for
−A∗

ij ). The −1’s present in the above expression have their
importance as they can lead to a final difference of π .

For more complicated fluxes mixing Aij and Bij parame-
ters, we flip one spin every two sites on Aij and A∗

ij bonds (as
previously), we flip all of them for Bij , and none for B∗

ij . The
flux is then half the solid angle associated with these modified
spin directions.

We can now reformulate the previously discussed relation
between chirality and fluxes. If a classical state is chiral, it has
nontrivial fluxes on contours where the spins are noncoplanar.
If the corresponding MF parameters are nonzero, we then have
found a loop with a nontrivial flux and whatever the gauge
choice, at least one MF parameter has to be complex. Now,
if a state is coplanar, then all fluxes are trivial and in a gauge
where the spin plane is xz, all MF parameters are real.

In the tetrahedral state described on Fig. 1, the flux of the
Aij around a small rhombohedron is ±π/3 and the flux of the
Bij around a small triangle is ±π/2 (depending on the choice
k = ±1; see Sec. V B).

B. Fluxes in quantum models

In the quantum realm, the fluxes can no longer be expressed
in term of solid angles. However, as we have already noted,
Wilson loop operators are gauge invariant quantities and, as
such, they are physical observables and can be expressed in
terms of the spin operators.

1. Spin- 1
2 formulas

To simplify we start by imposing that the constraint is
strictly verified for S = 1

2 , so there is exactly one boson
per site. We have noted that in the classical limit, the scalar
chiralities are associated with the fluxes. In the quantum case,
we can express the flux operators in terms of permutation
operators, generalizing some results of Ref. 7. The operator
that transports the spins at sites 1,2,3 to sites 2,3,1 is the
permutation noted P̂(123). We recall that the permutation
operator of spins between two sites can be written as

P̂(ij ) = 1
2 + 2̂Si · Ŝj . (39)

This straightforwardly implies that the flux of the B̂ij operators
is

: B̂
†
12B̂

†
23 · · · B̂†

n1 := 1

2n
P̂(12..n). (40)

where the colons denotes the normal ordered form. The
formula for the flux of the Âij operators is more involved.
It reads

: Â
†
12Â23Â

†
34 · · · Â2n 1 := 1

22n
P̂(12..2n)(1 − P̂(23))(1 − P̂(45)) · · · (1 − P̂(2n 1)). (41)

125127-10



TIME REVERSAL SYMMETRY BREAKING CHIRAL SPIN . . . PHYSICAL REVIEW B 87, 125127 (2013)

To prove this last assertion, we first note that 1−P̂(ij )

2 is the
projector on the singlet state of the two spins i and j . We then
verify this equality in the basis of states

⊗n
i=1 ψ2i,2i+1, where

ψi,j are eigenvectors of P(ij ). In the case where at least one
bond is in a symmetric state (triplet), both sides of Eq. (41) are
zero. The final step is simply to check that the relation holds
for the state which is a product of singlets.

2. Fluxes in quantum spin-S models

For S > 1/2, Eq. (39) is no more valid and Eqs. (40) and
(41) are not more valid either. However, we can still replace
the on-site number of bosons by 2S and obtain an expression
depending only on the spin operators. The expression of the
product of four Âij operators is

8 : Â
†
12Â23Â

†
34Â41 := (S1 · S2)(S3 · S4) + (S2 · S3)(S4 · S1) − (S1 · S3)(S2 · S4) + S2(S1 · S3 + S2 · S4 − S1 · S2

− S2 · S3 − S3 · S4 − S4 · S1) + S4 + iS(S4 · (S1 × S2)

− S1 · (S2 × S3) + S2 · (S3 × S4) − S3 · (S4 × S1)).

The expression of the product of three B̂ij operators is

4 : B̂
†
12B̂

†
23B̂

†
31 := S(S1 · S2 + S2 · S3 + S3 · S1) + S3 − iS1 · (S2 × S3). (42)

3. Fluxes in SBMFT

In a state where the on-site number of bosons is not strictly conserved, the previous expressions become a bit more complicated.
The number operators can no longer be replaced by 2S, and we have, for example,

4 : B̂
†
12B̂

†
23B̂

†
31 := 1

2
n̂3S1 · S2 + 1

2
n̂1S2 · S3 + 1

2
n̂2S3 · S1 + n̂1n̂2n̂3

8
− iS1 · (S2 × S3). (43)

C. Finite size calculations lattice symmetries and nonlocal fluxes

For simple lattices as the square or triangular lattice, we
can solve analytically the MF Hamiltonian HMF of Eq. (9)
directly in the thermodynamical limit. However, in most
cases, we have to solve numerically the self-consistency
conditions on finite lattices.

To use the chiral PSGs on a finite periodic lattice, we have
to be cautious about symmetries. Indeed, all precautions have
been taken so that the ansatz (strictly or weakly) respects the
lattice symmetries on an infinite lattice. However, we have to
verify that the finite periodic lattice has the same symmetry
group as the infinite one. This verification is quite usual for
local properties, but is more subtle for nonlocal ones and can
be most easily understood in term of fluxes on large nonlocal
loops.

PSGs impose that fluxes on local loops are preserved by
lattice symmetries (or sent to their opposite in the case of a
chiral state). However, some additional care has been taken
concerning loops which are topologically nontrivial (cannot
be shrunk to a point by a succession of local deformations).
These loops which “wind” through the boundary conditions
do not exist on the infinite lattice. For a symmetric ansatz
to remain symmetric on a finite periodic lattice, we have
to verify that the fluxes associated with these topologically
nontrivial loops also respect the lattice symmetries. The way
to treat the problem of the nonlocal loops is detailed in
Appendix F, together with several ways of understanding their
meaning.

VII. CONCLUSION

In this paper we have extended the PSG construction
to include time reversal symmetry breaking states with the
SBMFT. These TRSB phases that we describe generically as
chiral, also break one or many discrete symmetries of the
lattice (in the triangular example either σ or R6). Using this
constructive method we have built all the strictly and weakly
symmetric ansätze with two MF parameters on the triangular
lattice. All the regular O(3) magnetically ordered phases can
be obtained from these ansätze by spinon condensation (the
others ansätze have no regular classical limit). The TRSB
ansätze have, when they condense, nonplanar magnetic order
and nonzero scalar chiralities.

The present formalism has already been used in two
different models on the kagome lattice.15,17 In each case a
specific TRSB ansatz is found to be the GS. In Sec. V B,
another TRSB ansatz was discussed in relation to the ring
exchange model on the triangular lattice. It could reveal to
be the GS in some parameter range.10,36,37 More generally, all
classical regular nonplanar phases that have been studied in
Ref. 9 are putative TRSB SL in the quantum limit. The present
paper gives the general method to enumerate and build all
candidate SLs, and illustrate it more or less completely for the
triangular, the square, and the kagome lattice.

The TRSB SLs have short range spin-spin correlations but
nontrivial fluxes on various loops. The simplest of these fluxes
are related to the imaginary part of the permutation operator

125127-11



MESSIO, LHUILLIER, AND MISGUICH PHYSICAL REVIEW B 87, 125127 (2013)

of three spins that is directly related to their scalar chirality. In
some cases the time reversal symmetry breaking fluxes might
be more complex, as explained in Sec. VI and illustrated in
Appendix D 2 for the kagome lattice. These various fluxes have
been initially defined within the SBMFT but Sec. VI has shown
how these gauge invariant quantities can be expressed in terms
of spin operators, independently of any MF approximation.
It should be noticed that in a TRSB SL fluxes other than
those deduced from the ansatz may be nonzero and easier to
compute. It is the case, for example, in the cuboc1 SL recently
proposed for the nearest-neighbor Heisenberg model on the
kagome lattice.15 The flux of the Â bond operators around
the hexagons can be expressed in terms of spin permutation
operators but it is relatively involved [Eq. (41)] and has not
yet been computed numerically. In fact, in that phase (at least
at the MF level), there are simpler fluxes which are nonzero,
as, for example, the triple product of second neighbor spins
around hexagons, or the triple product of three consecutive
spins on an hexagon.

In spite of short range spin-spin correlations the TRSB SL
have some local order parameter associated with the fluxes,
which can break the lattice point-group symmetry. The finite
temperature broken symmetries being discrete symmetries,
there are no Goldstone modes and these chiral phases should
survive thermal fluctuations in 2D. The phase transition
associated with the restoration of the chiral symmetry has
been studied in some classical spin models.11,39,40 In spite
of the Ising-like character of the order parameter, the phase
transition was shown to be weakly first order due to interplay
of vortices in the magnetic texture with domain walls of the
chirality. It has been shown within the SBMFT framework in
the cuboc1 phase that large enough thermal fluctuations tend
to expel the chiral fluxes15 (favor coplanar correlations) but a
more complete study (beyond MF) of the finite temperature
properties of a TRSB SL would be required to understand
the specific properties of the chiral transition in these
systems.

Finally, it would be useful to clarify the “topological” differ-
ences (entanglement, degeneracy, edge modes, etc.) between
the present chiral SL described in the SBMFT framework with
the chiral SL wave functions related to fractional quantum Hall
states (such as the Kalmeyer-Laughlin state6 or that of Yang
et al.8 for instance), as well as the difference with conventional
(T -symmetric) Z2 liquids. It would also be very interesting to
analyze qualitatively the effects of (gauge) fluctuations in the
present chiral SL.

APPENDIX A: THE BOGOLIUBOV TRANSFORMATION

This Appendix explains how to obtain the eigenmodes of
Eq. (9). New bosonic operators, components of φ̃, are created
by linear combinations of the components of φ to obtain a
new diagonal matrix M̃ . For the Hamiltonian to possess a
GS (spectrum bounded from below), the diagonal elements
(ω1, . . . ,ω2Ns

) must all be positive or null. This transformation
is called the Bogoliubov transformation and is generally well
documented (see, for instance, Ref. 19) when the size of
the matrix M is 2 × 2 (the transformation can then be done
analytically), but more rarely for larger sizes (where numerical
calculations are sometimes required). When periodic ansätze

are considered, a Fourier transform can block-diagonalize M ,
with blocks of size 2m × 2m, with m the number of sites in
the unit cell. As soon as m > 1, Bogoliubov transformation of
matrices larger than 2 × 2 are needed.

Note that the choice of an ansatz without anyAij parameters
[for example, using Eq. (5b)] simplifies considerably the
Bogoliubov transformation since the total number of boson
is conserved and M is block diagonal with two blocks of size
Ns . The transformation reduces to the diagonalization of each
block by a unitary matrix. The new bosons b̃iσ are then linear
combinations of the old biσ , without any b

†
iσ component. The

vacuum of the new bosons is the same vacuum as for the
old bosons. To respect the constraint on the boson number,
we have to create a Bose condensate (see Sec. IV A), which
implies long-range magnetic order. This proves that the Aij

parameters are necessary to obtain SL.
Here we describe the general method for the cases where M̃

can have an arbitrary size, as explained in details in by Colpa.41

The 2Ns × 2Ns matrix P defined such that φ = P φ̃ is called
the transformation matrix. Let us look at the conditions P

should satisfy. The most evident is that M̃ must be diagonal,
which gives a first constraint. The second one is that the Ns

first components of φ̃ must be annihilation operators and the
last Ns , creation operators. This gives a constraint on their
commutation relations. The two resulting conditions are

P †MP = M̃, P †JP = J, (A1)

where J is the 2Ns × 2Ns diagonal matrix with coefficients
−1 for the Ns first terms and 1 for the last Ns elements
(Jij = [φ†

i ,φj ]). The second constraint makes the Bogoliubov
transformation different from a diagonalization (where J

would be the identity matrix). It is sometimes called a
paradiagonalization.

Here we just recall the main steps of the algorithm41 to
solve these equations.

(i) Verify that M is definite positive. It ensures that the GS
is unique (in some cases where M has zero eigenvalues, the
GS exists but is not the unique).

(ii) Find a complex upper-triangular square matrix K such
as M = K†K (Cholesky decomposition of M).

(iii) Find a unitary matrix U such that L = U †KJK†U is
diagonal with it first Ns coefficients positive and the other
negative (usual diagonalization of a Hermitian matrix).

(iv) The solution is M̃ = JL and P = K−1UM̃1/2.
Using the rotational invariance, we deduce that the Ns

first coefficients (ω1, . . . ,ωNs
) of M̃ are the same as the

Ns last (maybe differently ordered). The energy of the MF
Hamiltonian GS writes

E0 = 1

2

Ns∑
i=1

ωi + ε0, (A2)

and its elementary excitations are free bosonic spinons with
energies (ω1, . . . ,ωNs

) and spin- 1
2 , from which we can get the

free energy at any temperature. We are now able to look for
solutions of Eqs. (11) and (12), i.e., the stationary points of
the free energy with respect to the MF parameters and with
respect to the Lagrange multipliers.
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APPENDIX B: BOUNDS ON SELF-CONSISTENT VALUES
OF THE MF PARAMETERS IN SBMFT

The moduli |Aij | and |Bij | are a priori unconstrained real
numbers in SBMFT. We prove here that in a self-consistent
ansätze, their moduli cannot exceed an upped bound: |Aij | �
κ+1

2 and |Bij | � κ
2 . These inequalities considerably restrict

the domain to explore and facilitate the numerical search for
solutions.

Let |φ〉 be any normalized bosonic state. We denote by 〈Ô〉
the expectation value of an operator in this state. Whatever the
operators û and v̂ we have

|〈̂uv̂〉| � 〈̂uû†〉 + 〈̂v†v̂〉
2

. (B1)

Applying it to Âij and B̂ij , we obtain

|〈Âij 〉| � 〈̂ni + n̂j + 2〉
4

, |〈B̂ij 〉| � 〈̂ni + n̂j 〉
4

. (B2)

We now take |φ〉 as the GS of HMF [Eq. (9)] for some ansatz.
If the chemical potential is adjusted, 〈̂ni〉 = κ on every lattice
site. In the case of self-consistent parameters, |Aij | = |〈Âij 〉|,
|Bij | = |〈B̂ij 〉| and Eq. (B2) leads to

|Aij | � κ + 1

2
, |Bij | � κ

2
. (B3)

APPENDIX C: THE STRANGE CLASSICAL LIMIT OF THE
π FLUX ANSATZ OF WANG AND VISHWANATH4

Wang and Vishwanath4 explored all the strictly symmetric
ansätze ((εR6,εσ ) = (1,1)) with the Aij decoupling for first
neighbor Heisenberg interactions. They found two ansätze.
The first one is characterized by a flux Arg(AijA∗

jkAklA∗
li) = 0

around a rhombohedra for (p1 = 0), giving the 3 sublattice
Néel order in the classical limit. The second one has a flux
π rhombohedra (p1 = 1). The Aij parameters they used are
those obtained from Fig. 3 with the corresponding value of
p1 and k = 0.

Comparing this to our result for the SS ansätze, we may
wonder why do they obtain two possibilities for p1 (0 or
1), whereas we found that p1 = 0 was the only solution for
(εR6 ,εσ ) = (1,1). The difference comes from the absence of
the Bij parameter in their MF approach. The complex phase of
Bij is then ill defined and only the first of our two constraints
[Eqs. (34)] remains. They thus impose k = 0, but nothing on
p1. In fact, as this situation is the limit B1 → 0 of none of
the SS cases we have explored in Sec. V, it appears that the
π -flux ansatz is unstable with respect to the introduction of
Bij . In other words, any nonzero value of Bij will break at
least one lattice symmetry. The two WS ansätze described
in the sixth and seventh lines of Table I correspond to this
limit.

The nature of the spinon condensation in the π -flux ansatz
could not be completely clarified in Ref. 4. Our understanding
is that it is not consistent to imposeBij = 0 to describe ordered
states on a frustrated lattice. The only way to have |Bij |2 = 0
classically is indeed to have antiparallel spins on all bonds,
which is not possible on the triangular lattice.

APPENDIX D: WEAKLY SYMMETRIC ANSÄTZE ON
SOME USUAL LATTICES

1. Lattices with a square Bravais lattices

The first step is to find all chiral algebraic PSGs. We
choose the most general case IGG ∼ Z2 and we suppose that
Ĥ0 respects all the lattice symmetries whose generators are
described in Fig. 2 (right). The coordinates (x,y) of a point
are given in the basis of the translation vectors V1, V2 and the
action of the generators on the coordinates are

V1 : (x,y) → (x + 1,y), (D1a)

V2 : (x,y) → (x,y + 1), (D1b)

R4 : (x,y) → (−y,x), (D1c)

σ : (x,y) → (y,x). (D1d)

The algebraic relations between them are

V1V2 = V2V1, (D2a)

V2R4 = R4V1, (D2b)

R4
4 = I, (D2c)

V1R4V2 = R4, (D2d)

V1σ = σV2, (D2e)

R4σR4 = σ, (D2f)

σ 2 = I. (D2g)

To our knowledge, even the nonchiral algebraic PSGs have not
been derived previously. Here, we directly derive the chiral
ones. From Eqs. (D2), we deduce that the reduced set of
symmetries Xe is generated by V2

1 , V2
2 , and R2

4 (noted V ′
1,

V ′
2, and R2). Moreover, we find that εV1 = εV2 . An ansatz is

characterized by the parities (εV1,εR,εσ ).
The algebraic relations between these generators are

V ′
1V ′

2 = V ′
2V ′

1, (D3a)

R2
2 = I, (D3b)

V ′
1R2V ′

1 = R2, (D3c)

V ′
2R2V ′

2 = R2. (D3d)

As explained in Sec. III C, each of these relations gives a
constraint on the gauge transformations associated with the
generators. The constraints from Eqs. (D3) are then, for all i:

θV ′
2

(
V ′−1

1 i
) − θV ′

2
(i) = p1π, (D4a)

θR2 (i) + θR2 (R2i) = p2π, (D4b)

θR2

(
V ′−1

1 i
) − θR2 (i) = p3π, (D4c)

θV ′
2
(V ′

2i) + θV ′
2
(R2i) + θR2 (i) − θR2 (i) = p4π, (D4d)

where p1, . . . ,p4 can take either the value 0 or 1 (the equations
are written modulo 2π ). We note [x] the integer part of x/2 and
x∗ = x − 2[x] (0 � x∗ < 2). By partially fixing the gauge, we
impose

θV ′
1
(xi,yi) = 0, θV ′

2
(x∗

i ,yi) = p1
π

2
x∗

i . (D5)

Contrary to the triangular lattice, no gauge transformation can
here be used to get rid of some pi .
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Solving the previous equations (D4) leads us to

θV1 (x,y) = 0, (D6a)

θV2 (x,y) = p1
π

2
x, (D6b)

θR2 (x,y) = p3
π

2
x + p4

π

2
y + gR2 (x∗,y∗), (D6c)

with a complicated supplementary constraint that can be
treated only when the lattice is more precisely defined

gR2 (x∗,y∗) + gR2 ((−x)∗,(−y)∗) = p2π. (D7)

This constraint only depends on the coordinates of the sites in a
2 × 2 unit cell (x∗ and y∗), so it gives at most 4m independent
constraints.

These general algebraic PSGs can then be used to find the
weakly symmetric ansätze on any lattice with a square Bravais
lattice (for example, the square, the Shastry-Sutherland lattice,
etc.).

2. Weakly symmetric ansätze on the kagome lattice

The Bravais lattice of the kagome lattice is triangular, so
we use the algebraic PSGs determined in Sec. IV C. The unit
cell contains three sites. We choose to place the origin of the
frame at the center of a hexagon and the coordinates of the
sites in a unit cell are ( 1

2 ,0), (0, 1
2 ), and ( 1

2 , 1
2 ).

Since the sites have noninteger coordinates, it is convenient
to transform Eqs. (30) using the following gauge transforma-
tion [see Eq. (28)]:

G1 : (x,y) → −p1πyx∗. (D8)

The new algebraic PSG is

θV1 (x,y) = 0, (D9a)

θV2 (x,y) = p1π [x], (D9b)

θR3 (x,y) = p1π [x]

(
[y] − [x] + 1

2
+ [y∗ − x∗]

)
+ gR3 (x∗,y∗). (D9c)

Even if it seems more complicated than Eqs. (30), it avoids
some p1π/2 and simplifies the future ansätze. This gauge
transformation is equivalent to a different initial choice of
θV2 (x∗

i ,yi) in Eq. (27):

θV2 (x∗
i ,yi) = 0. (D10)

Under the effect of G, Eq. (31) is modified and gives the
constraint

gR3

(
1
2 ,0

) + gR3

(
0, 1

2

) + gR3

(
1
2 , 1

2

) = (p2 + p1)π.

Using the gauge transformations

G2 : (x,y) → ax∗, (D11a)

G3 : (x,y) → by∗, (D11b)

G4 : (x,y) → [y∗ − x∗]π, (D11c)

with a and b real numbers, we can set gR3 = 0. Finally, we have
two distinct algebraic PSGs for the reduced set of symmetries.
They are characterized by p1 = ±1 and defined by Eqs. (D9)
with gR3 = 0.

We have now to find all ansätze compatible with these
PSGs. We limit ourselves to first neighbor parameters, but

FIG. 4. (Color online) Ansätze respecting the Xe symmetries on
the kagome lattice up to a gauge transformation. Blue arrows carryBij

parameters of modulus B1 and of argument φB1 and Aij parameters
of modulus A1 and of argument 0. Red arrows are for moduli B ′

1 and
A′

1 and arguments φB ′
1

and φA′
1
. On dashed arrows Aij and Bij take

an extra p1π phase.

this procedure is easily generalized to further neighbors. Two
bonds are needed to generate the whole lattice: one blue and
one of red bond of Fig. 4. Using the PSG one obtains the
values of Aij and Bij on all other bonds. Note that Aij can be
chosen real for say the reference blue bond by using the gauge
freedom. The values of all bond parameters are represented in
Fig. 4 as a function of their value on the reference bond. The
general unit cell of parameters contains six sites because of the
possible nonzero p1. The simplicity of Fig. 4 ansätze, where
phases differ only by π between two bonds of the same color
is a consequence of the choice of Eq. (D10).

Finally, we can forget all about the PSG and only retain
the parameters needed to completely describe an ansatz with
the help of Fig. 4. These parameters consist of one integer
p1, four moduli A1, A′

1, B1, and B ′
1, and three arguments φA′

1
,

φB1 , and φB ′
1
.

We have now to consider all symmetries in Xo. As blue
and red bonds are related through R6, this implies equality
of the modulus: A1 = A′

1 and B1 = B ′
1. Phase relationships

are obtained by looking at the effect of R6 and σ on the
flux Arg(AijA∗

jkAklA∗
lmAmnA∗

ni) on an elementary bow tie and
Arg(AijBjkA∗

ki) on an elementary triangle (we suppose that
neither A1 nor B1 are zero). This leads to the constraints

(εR6 + εσ )φB1 = 0, (D12a)

φB ′
1
= εR6φB1 , (D12b)

(1 + εR6 )φA′
1
= 0, (D12c)

(1 + εσ )φA′
1
= 0. (D12d)

For each couple (εR6,εσ ), the number of compatible ansätze is
thus reduced:

(i) (εR6 ,εσ ) = (1,1): φB1 = φ′
B1

= 0 or π and φA′
1
= 0

or π ,
(ii) (εR6 ,εσ ) = (1,−1): φB1 = φ′

B1
and φA′

1
= 0 or π ,

(iii) (εR6 ,εσ ) = (−1,1): φB1 = −φ′
B1

and φA′
1
= 0 or π ,

(iv) (εR6 ,εσ ) = (−1,−1): φB1 = φ′
B1

and φB1 = 0 or π .
Finally, there are 20 different WS ansätze families, given

in Table III. Each regular states of Ref. 9 belongs to one
of them: the 2nd for the q = 0, the 6th for the

√
3 × √

3,
the 17th for the octahedral, the 20th for the cuboc1, and the
14th for the cuboc2 state. The parameters of the states in the
classical limit are calculated using Eq. (20) and are described in
Table IV. In a given family of ansätze, the modulus of the
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TABLE III. The 20 weakly symmetric ansätze families on the
kagome lattice, with the notations of Fig. 4. The moduli A1 = A′

1 and
B1 = B ′

1 are not constrained, except that they do not vanish.

bonds are free parameters; we give in Table IV their values
in the classical limit (κ → ∞). The self-consistent parameters
for finite S are different, but generally not far from the classical
values. Thus, the classical values can be used as a starting point
in numerical optimizations. The phases may (or not) be fixed
in a given ansatz: They are fixed in ansätze describing planar
nonchiral phases, and there is at least one free phase parameter
in the chiral ansätze.

These calculations are easily generalized to further neigh-
bors and have already been used for two studies on the kagome
lattice.15,17

TABLE IV. Values of the parameters of Fig. 4 for ansatz families
related to regular classical states on the kagome lattice. (The states
are designed by F for ferromagnetic, oct for octahedral, and cuboc
for cuboctaedron order parameters. These states are described in
more detail in Ref. 9.) The moduli verify A1 = A′

1 and B1 = B ′
1. The

interrogation points mean that the two values ε = ±1 are possible
(coplanar state). The ∗ means that the parameter value is free; we give
its value in the classical limit.

APPENDIX E: NUMBER OF INDEPENDENT FLUXES
ON A LATTICE

We suppose that we have a MF Hamiltonian with nA + nB
nonzero bond parameters ({Aij },{Bij }) (Aij and Aji count
as only one parameter, and the same for Bij and Bji). As
they are complex numbers, we need 2nA + 2nB self-consistent
conditions to solve this MF problem. We already know that the
solution is not unique and that two ansätze related by a gauge
transformation are equivalent. Thus, by fixing the gauge, we
can decrease the number of equations for the complex phases.
In fact, the number f of necessary arguments corresponds
to the number of independent fluxes on the lattice. In this
appendix, we describe a simple method to compute f on a
finite cluster.

We define a rectangular matrix M of size (nA + nB) × Ns

(Ns is the number of sites), where each line characterizes a MF
parameter, and is therefore associated with a pair of sites (ij ).
As for the column, they correspond to the lattice sites. The
coefficients of a line are all zero except for the two entries at
columns i and j . Both entries equal 1 for anAji bond, whereas
these entries are −1 and 1 for a Bji bond (which site is ±1 has
no importance). Then the result is

f = nA + nB − rank(M). (E1)

The effect of a gauge transformation on the bond phases
is obtained by multiplying M by the vector (θ1, . . . ,θNs

)t .
By definition, a product of bond parameters defines a flux
if the sum of their complex phases is unchanged by a gauge
transformation. It means that the sum of associated matrix
lines is 0. As the complex conjugate of a bond parameter can
be used, the weight of each line in the sum can be ±1. As
we can imagine using several times the same parameter, the
weight of each line in the sum can finally be any relative
integer. So, the existence of a flux relating a set of parameters
is equivalent to the existence of a vanishing linear combination
of their lines.

We can now give the proof of Eq. (E1) by induction. The
relation Eq. (E1) is true for one parameter:

M =
(

1 1

1 1

)
or M =

(
1 −1

−1 1

)
. (E2)

We suppose now Eq. (E1) is true for nA + nB parameter and
we add a parameter on a bond (possibly with a new site).

(i) If a new site is added, the matrix gains a column and a
line with a 1 at their intersection, so the rank of M increases by
1 and f remains the same. As we can choose the gauge on the
new site, the new parameter can be chosen real, and Eq. (E1)
remains true.

(ii) If no new site is added and there is new flux using the
new parameter, the new line is a linear combination of previous
lines, thus, rank(M) is unchanged and f increases by 1.

(iii) If no new site is added and no new flux exists using
the new parameter, the new line cannot be written as a linear
combination of previous lines and f remains the same.
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L1

L2 �1

�2

�3

FIG. 5. (Color online) Triangular lattice with 12 sites (solid
circles) and periodicity L1 and L2, respecting all the lattice sym-
metries of Fig. 2. Three nonlocal loops �1, �2, and �3 are drawn in
dashed arrows. The green dotted lines cross the bonds where the MF
parameters are multiplied by −1.

APPENDIX F: EXAMPLE OF NONLOCAL FLUXES
BREAKING THE LATTICE SYMMETRIES

We illustrate the possibility for an ansatz to be incompatible
with a periodic lattice. The example we give is an ansatz
on a 12-site periodic triangular lattice (Fig. 5) that strictly
respects the infinite lattice symmetries (Fig. 2). Let us choose
for simplicity the ansatz with only first neighbor Aij MF
parameters defined by k = 0 and p1 = 1 (already discussed
in the classical limit in Appendix C). This ansatz is the
simplest illustration of these symmetry issues, but they can be
encountered for any other ansatz (as becomes clearer later on).

Periodic boundary conditions defining a finite lattice are
defined by the two vectors: L1 and L2. Two sites separated by
an integer linear combination of the L1 and L2 vectors (Fig. 5)
are identified as the same sites. The three loops �1, �2, and �3

are mapped onto each other by rotations and should therefore
have the same fluxes in a WS or SS ansatz. However, here their
values are 0 for �2 and �3 and π for �1. This is due to the fact that
the unit cell of the ansatz is twice the unit cell of the triangular
lattice, and it introduces a distinction between the directionsL1

and L2. The R3 symmetry cannot be restored simply using a
gauge transformation. We see in the figure that the combination
of the three loops (�1 + �2 + �3) is a local loop, with trivial
winding numbers. Thus, the flux of this loop is fixed by the
ansatz and it is π . If we do not change the local physical
properties of the ansatz, which we did not want to do, the sum
of the three fluxes should remain equal to π (modulo 2π ),
and the only way out is to have a π flux on the three nonlocal
loops. This can be done by choosing a specific nonlocal contour
(here the green �1 contour, for example) and adding an extra
phase π to all MF bond parameters crossing this contour.45

Transformation does not affect the local (contractible loops)
fluxes since they always contain an even number of altered
parameters. However, the fluxes associated to �2 and �3 acquire
an extra phase factor. The three fluxes around �1, �2, and �3

are all equal to π and the symmetries of the infinite lattice are
now respected for this finite periodic lattice.

We can see this modification as a change in the boundary
conditions (BCs), from periodic in both directions,

b(i+n1L1+n2L2)σ = biσ,

FIG. 6. (Color online) The hexagon is the Brillouin zone of the
triangular lattice, the rectangle, this of the ansatz. The wave vectors of
the 12-site lattice with PBCs are the blue ones, whereas they are the
green ones for PBC in the L1 direction and APBC in the L2 direction.
The background intensity is the value of the spinon energy (dark for
minima).

to periodic in the L1 direction and antiperiodic in the L2

direction,

→ b(i+n1L1+n2L2)σ = (−1)n2biσ,

where n1 and n2 are arbitrary integers. This changes the set of
allowed wave vectors k from

k · L1 = 0, k · L2 = 0,

to

k · L1 = 0, k · L2 = π.

The wave vectors of the 12-site lattice before and after the
transformation are drawn in Fig. 6. The spinon dispersion
computed in the thermodynamic limit has two minima (dark
red). Periodic BCs (PBCs) for this 12-site sample present
evident drawbacks: The pattern of allowed wave vectors (blue
points in Fig. 6) does not respect the R3 symmetry of the
spinon dispersion and the minimum of the spinon dispersion is
not reached in the 12 sites samples with these PBCs. We could
hastily have supposed that single-spinon states are not physical
excitations and as such they do not have to respect the lattice
symmetries. However, this statement is incorrect. The vacuum
of spinons calculated from the set of wave vectors obtained
from PBCs is itself distorted and so are any physical quantities,
as, for example, spin-spin correlations that are calculated from
this input. On the contrary, the modified BCs restore the R6

symmetry of the pattern of authorized wave vectors around the
spinon minima.

This can also be understood in a different way. The periodic
or antiperiodic BCs (APBC) define the four topological sectors
on the torus. To go from one sector to another, we create two
visons,42 move one of them around the lattice and annihilate
them again. It is equivalent to the sign change of the MF
parameters along this loop. The present discussion shows that
for the 12-site sample, PBCs do not define the (0,0) topological
sector of the model and we have to go to the APBC to describe
this fully symmetric sector. In classical terms a change of π

in a flux around a loop corresponds to a rotation of 2π of the
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spin orientations, thus to a Z2 vortex.43,44 Translated to the
classical limit, the previously used periodic BCs correspond

in fact to a twist of 2π of the magnetization around the lattice,
and thus to a non trivial vorticity.
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